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Advantages to transforming the receiver operating
characteristic (ROC) curve into likelihood ratio co-ordinates
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SUMMARY

Traditionally, the receiver operating characteristic (ROC) curve for a diagnostic test plots true positives
(sensitivity) against false positives (one minus speci�city). However, this representation brings with
it several drawbacks. A transformation to positive and negative likelihood ratio co-ordinates, scaled
by base-ten logarithms, o�ers several advantages. First we motivate the use of positive and negative
likelihood ratios, emphasizing their relationship to modi�cation of the odds ratio. Then we highlight
properties of likelihood ratios using the traditional ROC axes. Finally, we demonstrate ROC curves and
their properties after conversion to likelihood ratio co-ordinates. These graphs do not waste space for
tests lacking diagnostic power, and o�er a simple visual assessment of a test’s impact on the odds ratio.
Copyright ? 2004 John Wiley & Sons, Ltd.
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INTRODUCTION

A diagnostic test revises the pre-test probability of disease via application of Bayes’ theo-
rem [1]. For a binary diagnostic test, a positive result revises this probability upwards while a
negative result revises it downwards. To convert a continuous diagnostic test to a binary one,
ranges of results in the continuous variable must be interpreted as either positive or negative.
The choice of positive and negative cut-o�s determines the rates of true and false positives,
when compared to the gold standard for diagnosing the disease. The true and false positive
rates, in turn, determine the magnitude of revision to the disease’s probability.
A receiver operating characteristic (ROC) curve plots the true positive rate against the false

positive rate for di�erent choices of cut-o� ranges [2]. However, these axes obscure more than
they enlighten. First, half of the area shown on an ROC plot cannot contain any meaningful
curves. This deceives the eye into minimizing area di�erences. Second, it requires substantial
familiarity with the subject to understand how the true positive or false positive rate alters
the probability of disease. Positive and negative likelihood ratios provide clearer descriptors
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for altering disease probability. Third, several constraints and properties of ROC curves can
be more easily represented when viewed using positive and negative likelihood ratio axes.
We propose that likelihood ratios provide a better set of axes for the ROC curve than

the traditional true and false positive rates. First, we motivate the de�nition of positive and
negative likelihood ratios. Their modi�cation of the odds ratio takes on particular importance.
Second, we note some important properties of ROC curves. Third, we graphically demon-
strate several connections between likelihood ratios and the traditional ROC axes. Finally, we
demonstrate the appearance and properties of the ROC curve with positive and negative like-
lihood ratio axes, scaled by base-ten logarithms. These ease visual interpretation for selecting
an operating point for a binary diagnostic test.

LIKELIHOOD RATIOS

To motivate the new axes for ROC curves, let us derive some well-known theory concerning
diagnostic tests. Four outcomes can result when comparing a binary diagnostic test T to the
gold-standard de�nition of disease D. Either a positive, T+, or negative, T−, test result can exist
in the presence, D+, or absence, D−, of disease. The sensitivity, Se=P(T+|D+) (probability of
a positive test result in the presence of disease), and speci�city, Sp=P(T−|D−) (probability
of a negative test result in the absence of disease), characterize a binary diagnostic test. A pre-
test probability p=P(D+), for example the prevalence of disease in the general population [1],
gives the following two-by-two table of outcome probabilities.

D+ D−

T+ pSe (1− p)(1− Sp)
T− p(1− Se) (1− p)Sp

Total p 1− p

To compute p+ =P(D+|T+), the probability of disease given a positive test result, apply
Bayes’ theorem [3] as guided by this outcome table to �nd

p+ =
P(D+)P(T+|D+)

P(D+)P(T+|D+) + P(D−)P(T+|D−)
=

pSe
pSe+ (1− p)(1− Sp)

Manipulation gives the more interpretable form

p+
1− p+ =

Se

1− Sp

p
1− p (1)

The odds ratio OR=p=(1 − p) describes the ratio of disease probability to the probability
of no disease. An odds ratio takes on values between zero (certainly no disease present)
and in�nity (certainly disease present) and can be converted back to a disease probability by
p=OR=(1 + OR). The expression

LR+ =
Se

1− Sp
(2)
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is called the positive likelihood ratio, or the likelihood ratio of a positive test. The de�nitions
of the odds ratio and positive likelihood ratio allow equation (1) to be written as the product

OR+ = LR+ ·OR (3)

Similarly, to compute p−=P(D+|T−), the probability of disease despite a negative test
result, apply Bayes’ theorem as above to �nd

p−=
P(D+)P(T−|D+)

P(D+)P(T−|D+) + P(D−)P(T−|D−)
=

p(1− Se)
p(1− Se) + (1− p)Sp

Manipulation as before yields

p−
1− p−

=
1− Se

Sp

p
1− p (4)

where the expression

LR−=
1− Se

Sp
(5)

is called the negative likelihood ratio, or the likelihood ratio of a negative test. The de�nitions
of the odds ratio and negative likelihood ratio allow equation (4) to be written as the product

OR−= LR−OR (6)

A useful diagnostic test must revise the pre-test probability upwards after a positive test
result, or revise the pre-test probability downwards after a negative test result. Equations (3)
and (6) state that, for this to hold, LR+¿1 and LR−¡1, as the odds ratio changes in the same
direction as the probability. Both of these conditions yield the same constraint: Se+ Sp¿1.
Fortunately this constraint can always hold, for if Se+Sp¡1 then reversing T+ and T− creates
a new diagnostic test satisfying the constraint, as can be seen by examination of the two-by-
two table of outcome probabilities. The case Se+Sp=1 describes a diagnostic test equivalent
to a coin toss with probability Se of T+, and o�ers no diagnostic power as LR+ = LR−=1.
Likelihood ratios provide an alternate description to sensitivity and speci�city for a binary

diagnostic test. Their usefulness can be seen best in equations (3) and (6), where they revise
the pre-test odds ratio to give the post-test odds ratio in a multiplicative fashion. This post-test
odds ratio serves, in turn, as the pre-test odds ratio for the next independent diagnostic test,
thereby concatenating equations of form (3) and (6). After performing a series of independent
diagnostic tests on a patient with an initial odds ratio OR0, the �nal odds ratio ORa+b can be
written as a product

ORa+b= LR
(1)
+ · · · LR(a)+ · LR(1)− · · · LR(b)− ·OR0

where a + b diagnostic tests have yielded a positive results and b negative results, with
likelihood ratios LR(i)+=− for each test. Dividing by the original odds ratio and taking the
logarithm of both sides yields

log
ORa+b
OR0

=
a∑
i=1
log LR(i)+ +

b∑
j=1
log LR( j)− (7)
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where the �rst summation describes the net increase to the odds ratio provided by positive
test results and the second summation describes the net decrease to the odds ratio provided
by negative test results. Since LR+¿1, then log LR+¿0 and the �rst summation is strictly
positive. Since LR−¡1, then log LR−¡0 and the second summation is strictly negative.
Equation (7) provides a compact form for summarizing the e�ect of multiple independent

diagnostic test results on the probability of disease. For example, to increase the odds ratio by
at least an order of magnitude from its initial value, ORa+b=OR0¿10, a diagnostic test must
have log10 LR+¿1. Similarly, to decrease the odds ratio by at least an order of magnitude
from its initial value, a diagnostic test must have log10 LR−6− 1.

THE ROC CURVE

While a binary diagnostic test produces only two outcomes, a continuous diagnostic test
returns a result from a continuum. A continuous test can be converted to a binary test by
choosing ranges of the test outcome and interpreting results within those ranges as negative
and results outside those ranges as positive. Ranges based on the likelihood-ratio criterion or
its equivalent yield optimal results for a number of di�erent decision goals [3].
Denote the probability density functions of a continuous diagnostic test in variable x as

f(x|D+) in the presence of disease and f(x|D−) in the absence of disease. Compute the
likelihood ratio

L(x)=
f(x|D+)
f(x|D−)

(8)

which describes the ratio of the probability of observing x in the diseased population compared
to the disease-free population. (Although equation (8) is called the likelihood ratio, it is a
di�erent concept than the likelihood ratios in equations (2) and (5). The term ‘likelihood’ is
popular and appears in these distinct, but related, concepts.) Label regions with L(x)¡x0 as
T− and those with L(x)¿x0 as T+, where x0 can vary between zero and in�nity. Each x0
converts the continuous diagnostic test into a binary diagnostic test, with

Se=P(T+|D+)=
∫ ∞

x0
f(x|D+) dx

true positives and

1− Sp=P(T+|D−)=
∫ ∞

x0
f(x|D−) dx

false positives, assuming that L(x) increases monotonically with x. (If this is not the case,
Se and 1 − Sp can be expressed as a summation of integrals over appropriate regions as
determined by L(x). The following results hold in this case too [4].)
An ROC curve (also termed a relative operating characteristic curve by some authors [5])

plots Se (true positives) against 1−Sp (false positives) for all possible likelihood ratio cut-o�s.
The slope of the ROC curve can be found by application of the chain rule, the fundamental
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Figure 1. (a) The probability density function of a hypothetical continuous diagnostic test for
non-diseased (solid) and diseased (dashed) populations. Each normal curve has a standard deviation of
one and a mean of zero (solid) or one (dashed) in arbitrary units. (b) The ROC curve (solid) for the

hypothetical continuous diagnostic test, as well as the line Se+ Sp=1 (dashed).

theorem of calculus, and by noting that f(∞|D+)=f(∞|D−)=0,

d
(
P(T+|D+)
P(T+|D−)

)
x0

=
dP(T+|D+)=dx0
dP(T+|D−)=dx0

=
f(x0|D+)
f(x0|D−)

=L(x0)

The slope of the ROC curve equals the likelihood ratio at that point as given by equation (8).
Figure 1 demonstrates a continuous diagnostic test with normal probability density functions

separated by one standard deviation for the diseased and non-diseased populations, and the
corresponding ROC curve. For a low cut-o� value, almost all patients receive positive test
results. This produces a high sensitivity, but a low speci�city. For a high cut-o� value, almost
all patients receive negative test results. This produces a low sensitivity, but a high speci�city.
As the cut-o� increases in Figure 1(a) from minus in�nity to positive in�nity, values along
the ROC curve move from the upper-right to the lower-left corners of Figure 1(b).
An ROC curve produced using the likelihood-ratio criterion has several important proper-

ties [3, 4]. First, as demonstrated above, the slope equals the likelihood ratio at that point.
Second, the slope decreases monotonically, which implies that the ROC curve cannot be
concave upward. Third, the ROC curve is ‘proper’ in the sense that it de�nes the upper
boundary of all possible ROC curves based on the underlying probability density func-
tions, and lies entirely outside of the area Se + Sp¡1. Fourth, the area under the ROC
curve (AUC) equals the percentage correct in a two-alternative forced-choice task [6]. How-
ever, the AUC has been criticized for being an inconsistent metric when comparing two
curves [7].
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LIKELIHOOD RATIOS ON THE ROC CURVE

Equation (2) can be manipulated into

Se= LR+(1− Sp) (9)

and equation (5) can be rewritten as

Se= LR−(1− Sp) + (1− LR−) (10)

Lines through the lower-left corner (Se=0 and 1−Sp=0) of an ROC curve have slope LR+,
as shown in equation (9). Lines through the upper-right corner (Se=1 and 1−Sp=1) of an
ROC curve have slope LR−, as shown in equation (10).
As can be seen from equation (7), regions of the ROC curve where |log LR+|¿|log LR−| will

proportionally increase the odds ratio more after a positive test result than its decrease after
a negative test result. The equivalent statement LR+¿1=LR− can locate these regions in the
potential ROC space, using equations (2) and (5). Set LR+ =1=LR− and cross multiply to �nd
Se(1−Se)=Sp(1−Sp), which can be solved as a quadratic equation Se2−Se+(Sp−Sp2)=0
with Sp as the independent variable. The solution Se= 1

2 ∓ 1
2 ±Sp yields the straight lines

Se=Sp and Se=1 − Sp. A similar analysis �nds that regions between these lines have
|log LR+|¿|log LR−|, while regions outside have this inequality reversed.
Figure 2 demonstrates several properties of positive and negative likelihood ratios in the

potential area for an ROC curve. Three regions can be de�ned using the lines Se=Sp
and Se=1 − Sp. The region below Se=1 − Sp has LR+¡1 and LR−¿1 and therefore
no proper ROC curve will exist there. The region above Se=1 − Sp but below Se=Sp
has |log LR+|¿|log LR−|, and operating points in this region produce proportionally larger in-
creases after positive test results than negative test results. The region above Se=1−Sp and
Se=Sp has |log LR−|¿|log LR+|, and operating points in this region produce proportionally
larger increases after negative test results than positive test results. Only along Se=Sp and
Se=1 − Sp does |log LR+|= |log LR−|. Straight lines through the lower-left corner represent
isocontours of LR+ as given by equation (9). Straight lines through the upper-right corner
represent isocontours of LR− as given by equation (10).

THE ROC CURVE IN LIKELIHOOD RATIO CO-ORDINATES

Half of the potential region for ROC curves has no meaning. Proper ROC curves lie above
Se=1 − Sp, except at the lower-left and upper-right corners where all test results are ei-
ther negative or positive, respectively. The axes of true positives and false positives do not
obviously translate into modi�cations of the pre-test probability or odds ratio, in contrast to
equations (3) and (6). As motivated above, likelihood ratios provide a more useful metric
when considering these factors. Therefore, examining the ROC curve after its transformation
into likelihood ratio co-ordinates merits consideration.
Figure 3 shows several ROC curves before and after their conversion into likelihood ratio

co-ordinates using equations (2) and (5). These ROC curves come from continuous diagnostic
tests which separate normal distributions by increasing integer numbers of standard deviations.
The likelihood ratio axes have been further transformed by base-ten logarithms to simplify
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Figure 2. The potential region for ROC curves can be divided into three important regions by the
lines Se=Sp (thick dashed) and Se=1 − Sp (thick solid). Along these lines |log LR+|= |log LR−|.
Below Se=1 − Sp (not shaded) LR+¡1 and LR−¿1. Between the thick solid and dashed lines
|log LR+|¿|log LR−| (darker shading). Above the thick solid and dashed lines |log LR−|¿|log LR+|
(lighter shading). Points on a line through the lower-left corner (thin solid) produce the same
LR+, as given by equation (9). Points on a line through the upper-right corner (thin dashed)

produce the same LR−, as given by equation (10).

application of equation (7). In Figure 3(a) ever better ROC curves bend more towards the
optimal upper-left corner, where Se=Sp=1. Similarly, in Figure 3(b) ever better ROC curves
move away from the lower-left corner, where |log10 LR+|= |log10 LR−|=0 and towards the
upper-right area where |log10 LR+| and |log10 LR−| approach in�nity.
As shown in Figure 3(b) using these new co-ordinates, only the curve representing popula-

tions with means separated by three standard deviations has operating points for which both
|log10 LR+|¿1 and |log10 LR−|¿1. Both of the other curves fall outside this area, meaning that
no operating point can be chosen such that both positive and negative test results change the
odds ratio by at least an order of magnitude. Such quantitative observations cannot be easily
made from the curve viewed with standard axes in Figure 3(a).
Lines of constant LR+ and LR− provide a means of bounding all proper ROC curves which

pass through their intersection. Consider an arbitrary point on an ROC curve, and plot the
lines of constant LR+ (through the lower-left corner) and constant LR− (through the upper-
right corner) which pass through that point. Such a point and its likelihood ratio lines are
shown in Figure 4(a). The area between these lines (shaded in Figure 4) must contain the rest
of the ROC curve [4]. Equivalently, |log LR+| must decrease monotonically while |log LR−|
increases monotonically. The horizontal and vertical lines of Figure 4(b) provide an easier
visual restriction than the sloped ones of Figure 4(a).
Figure 4(a) also provides a means of comparing two binary diagnostic tests [8]. As noted

above, all points in the area below a line of constant LR+ and a line of constant LR− have
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Figure 3. (a) ROC curves plotted using the traditional axes of true positives (sensitivity) and false
positives (one minus speci�city). The three curves correspond to normal probability density func-
tions as in Figure 1(a), here separated by one, two, and three standard deviations (solid, dash–dot,
and dotted lines, respectively). (b) ROC curves from (a) plotted using the axes of positive and neg-
ative likelihood ratios, de�ned by equations (2) and (5), further scaled using base-ten logarithms.

The straight line (dashed) has |log LR+|= |log LR−|.

lower values of |log LR+| and |log LR−| than at the point of intersection. Likewise, all points
above both lines have higher values of |log LR+| and |log LR−| than at the point of intersection.
Points in the darker shaded area have a higher |log LR+| but a lower |log LR−|. Points in the
lighter shaded area have a lower |log LR+| but a higher |log LR−|.
Therefore, to compare two binary diagnostic tests, plot one test on an ROC curve along

with corresponding lines of constant LR+ and LR−. If the other diagnostic test lies below both
lines, its |log LR+| and |log LR−| are both less than the other test’s. If it lies above both lines,
its |log LR+| and |log LR−| are both greater than the other test’s. Otherwise, the two tests o�er
a tradeo� between LR+ and LR−. Note that Figure 4(b) eases such a comparison, as the lines
become vertical and horizontal and the areas become rectangular. Such comparisons also have
a relationship to regret graphs [8, 9].
The traditional ROC axes have necessary limits of 0 and 1, inclusive. The logarithm like-

lihood ratio axes are only bounded by 0 at one end. Choosing the second limit for each axis
now becomes a matter of choice depending on the ROC curve at hand. While this means that
graphs of di�erent ROC curves might not be as comparable as with the traditional axes, upper
limits of ±3 or ±4 (corresponding to |log LR+| and |log LR−| of 1000 or 10000, respectively)
should be adequate for almost all graphs. Indeed, the ability to focus the graph on a region
of interest, say a tradeo� between LR+ and LR− for a speci�c clinical situation, will make
the new axes even more useful.
The AUC using traditional ROC axes ranges from 1

2 for a test with no diagnostic power
(Se + Sp=1) to 1 for a ‘perfect’ test (Se=Sp=1). The �rst case maps to the single
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Figure 4. Proper ROC curves are bounded by lines of constant LR+ and LR−. Solid lines denote
constant LR+. Dashed lines denote constant LR−. The darker shaded area covers regions with in-
creasing |log LR+|. The lighter shaded area covers regions with increasing |log LR−|. (a) A proper
ROC curve which passes through a point is bounded by the straight lines from (0; 0) and to (1; 1)
which pass through that point. (b) A transformed proper ROC curve which passes through a point
in base-ten logarithm positive and negative likelihood ratio co-ordinates is bounded by horizontal

and vertical lines which pass through that point.

point (|log LR−|; |log LR+|)= (0; 0) and the second case maps to the single point (|log LR−|;
|log LR+|)= (∞;∞). The area under an ROC curve using transformed co-ordinates similarly
ranges from 0 to in�nity for these two cases. In practice, the AUC using traditional axes often
lies toward the upper end of its range, where a small increase in the AUC corresponds to a
vastly better diagnostic test. The AUC using the transformed axes assigns the more meaning-
ful value of 0 to a useless diagnostic test, and does not su�er from crowding of values as
tests approach ‘perfection’.

CONCLUSION

Graphing the ROC curve using logarithm likelihood ratio co-ordinates o�ers several advantages
for interpretation. First, points of no diagnostic power (Se + Sp=1) map to (0; 0). The
rest of the space denotes diagnostically useful tests. Second, these co-ordinates more clearly
reinforce visually that |log LR+| decreases monotonically as |log LR−| increases monotonically.
Third, isocontours of constant LR+ and LR− fall along horizontal and vertical lines instead
of sloping lines. Fourth, scaling by a base-ten logarithm allows visual quanti�cation of the
impact of a diagnostic test on equation (7), and therefore makes more apparent the tradeo�s
for a given operating point of the associated binary test.
The traditional axes of true positives (sensitivity) and false positives (one minus speci-

�city) obscure the more important measures of positive and negative likelihood ratios when
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examining a diagnostic test. We encourage future authors to give ROC curves using positive
and negative likelihood ratio axes.
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